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The Diffraction of X-rays by Distorted-Crystal Aggregates. 
17. Diffraction by Bent Lamellae 
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The apparent particle size of distorted crystaUites varies from independence of 0 and 2t (particle-size 
broadening) to proportionality with/~ cosec O (distortion broadening) as the parameter E~] sin 0/2~ 
increases, where E is a particle size and y is an average strain. For a bent 'orthorhombie' lamella of 
thickness T with axes chosen so that  z is parallel to the axis of bending, x perpendicular to the 
lamella, and y perpendicular to x and z, the apparent particle size e is given by 

2TfloSin[2~rA~(1-~)]d~ ' 
p 

where A =-- T ]q2 _ c2zp~/clzl T sin p R "A ' R is the radius of curvature, p, q, r are the direction cosines of 

the reflecting planes, and c~1 and cll are elastic constants. 

Introduction 

Under  the ma in  ti t le above, Dr  A. R. Stokes and  the 
writer publ ished a crude bu t  general t r ea tment  of the 
Debye-Scherrer pat tern  given by  an aggregate of dis- 
torted crystals (Stokes & Wilson, 1944 a). The t rea tment  
was general, in tha t  no part icular  type  of strain was 
postulated, bu t  crude in tha t  s train gradients were 
neglected. This note contains some more refined results, 
without  neglect of s train gradients, for the part icular  
case of diffraction b y  bent  lamellae, of thickness small  
in comparison wi th  their  other dimensions. Such bent  
lamellae would be produced in the ' k ink ing '  described 
b y  0 rowan  (1942). Publ icat ion of this incomplete 
invest igat ion at the present t ime is prompted by  a paper 
given by  Dr  H. Ekste in  at  the Harva rd  meeting of the 
In ternat ional  Union of Crystallography, in which he 
concluded tha t  moderate  bending would lead to no line 
broadening. When  certain effects neglected b y  h im are 
taken into account an expression is obtained which 
changes continuously from 'smal l -par t ic le '  to 'dis- 
tor t ion '  broadening as the ratio Tg/XR increases, where 

T is the thickness of the lamellae and R is their  radius 
of curvature.  This behaviour  is not, however, confined 
to the part icular  model of bent  lamellae, and m a y  be 
of interest in connexion with some recent experiments  
(Wood & Rachinger,  1948) (see, however, Wood (1943) 
and Lipson & Stokes (1943)) in which the apparent  
strain in cold-worked metals  was found to va ry  with 
the wave-length. 

Calculation 

In  the simplest  case, when the  glide lamellae are 
assumed to possess orthorhombic symmet ry  and to be 
bent  into portions of circular cylinders, the displace- 
ment  u, v, w of the point x, y, z from its position in the 
undistorted state is given by  

u = - ax2/2R - y~/2R, ] 

v = x y / R ,  [ (1) 

w = 0 ,  

where x is t aken  perpendicular  to the glide plane, y in 
the glide direction, z parallel  to the axis of the cylinder, 
and a = c2Jc n is a sort of Poisson's ratio for these axes. 
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Cube terms are omitted, and the origin is taken at the 
centre of the lamella. For the intensity distribution in 
reciprocal space these displacements lead to compli- 
cated functions involving Fresnel integrals, but a fairly 
simple expression for the apparent particle size from 
Debye-Scherrer lines is obtainable. If  the direction 
cosines of the reflecting plane are p, q, r relative to the 
above axes, the displacement normal to the plane is 
pu  + qv, so that  the effective structure amplitude of cells 
in the neighbourhood of x, y, z is changed from F to 

F '=Fexp{ -27r i (2 s inO/h ) (pu+qv ) } .  (2) 

The product of this by the complex conjugate of F '  for 
a cell distant t in the direction p, q, r is 

F'F '*  = F F *  exp {2~i(sin O/,~R) 

X [p{CtX e -{- ye _ ct(x +pt) ~ -- (y + qt) 2} 

+ 2q{(x +pt) (y  + q t ) -  xy}]} 

= F F *  exp {2hi(sin O/AR) (qe _ape) (pte + 2xt)}. 

(3) 

The mean value of this with respect to x is Jr, the func- 
tion required for calculating integral breadths (Wilson, 
1943; Stokes & Wilson, 1944b). The limits for x are 
_+ ½T, but for x positive F '*  is zero for x > ½ T - p t ,  and 

for t negative F '  is zero for x < - ½ T - p t .  For t positive 
therefore 

F F *  [" ½T-~t 
exp{2.i(sm 

x (pt e + 2xt)} dx 

F F *  ~IR 
-- T - - p t  2n(q 2 -  ap e) t sin O 

× sin {2n(qe-ap2) (sin O/hR) ( tT-pt2)} .  (4) 

For t negative the same expression is found, except 
tha t  t is replaced by It I. Then the apparent particle 
size is / ,  

e = (V o J o ) - l j V t  Jtdt, 

where Vt is the volume common to the crystal and its 
'ghost '  shifted a distance t in the pqr direction, and 
V0, J0 are the values of Vt, Jt for t = 0. Since 

Vt= (area of lamella) ( T - p [ t  1), 

1 F T/v AR 

T J _  Tip 2u(q2--~zP~)lt]si n 0 

× sin{27r(q~-ap 2) (sin 0 /hR)( l t l  T - p t e ) } d t  

_ 2 T (  1 sin{2zrA~(1 - ~)} d~, 

p jo (5) 
where ~ = p l t [ / T ,  (6) 

A = T ] q~-  ap 2 [ T sin 0 
p R ~ . (7) 

The integral in (5) is a function of the single parameter 
A. For A small it reduces to ½, and for A large to 1/(4_4). 
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The extreme values of e are therefore 

e= Tip  (A ~ 1), (S) 

e=hcosecO(R/2T]qe -ap~] )  (A >> 1). (9) 

The first of these is small-particle broadening, the 
second distortion broadening. I t  may be expressed in 
the form of ' apparen t  strain '  (Stokes & Wilson, 1944a) 

y = f l c o t O = / t / e s i n O = 2 T ] q e - a p 2 [ / R .  (10) 

For small A (5) can be expanded in a power series in A, 
giving 

Pe ~ n (-)n(27rA) 2n ~1~2n( 
2T (2-n+~i  J0 1-~)2n+ld~ 

( - ) n  (2n) ! (2hA) 2n 
-=Z (11) 

n (4n+2)  ! 

This converges rapidly for A < 2, but becomes incon- 
venient for larger values. 

In deriving these expressions no account has been 
taken of possible coherence between the lamellae for 
reflexions with p =  1. For other reflexions coherent 
scattering from different lamellae is very unlikely, but 
for these, in the region approximating to 'small- 
particle'  broadening, the apparent particle size may be 
anomalously large. 

Equation (5) gives a continuous variation from small- 
particle broadening to distortion broadening. I t  is, of 
course, unnecessary to postulate the particular model 
of bent lamellae in order to obtain a continuous transi- 
tion with variation of a parameter involving the wave- 
length. To a first approximation (Stokes & Wilson, 
1944a) 

J t = F F  * ¢(e)exp{2ni(2sinO/,~)te}de, (12) 

where ¢(e) de is the fraction of the crystal for which the 
strain perpendicular to the reflecting planes lies between 
e and e + de. The apparent particle size is then 

e = V~ 1 Vt¢(e) exp {2ni(2 sin 0/h)te} dedt. (13) 

In terms of the variable s, equal to 2(sin 0 - s i n  00)/,~, 
where 0 o is the Bragg angle for a large crystal, the line 
profile I(s) for an undistorted crystal is 

f° I(s) = U -1 Vt exp {2nist} dt, (14) 

where U is the volume of a unit cell, so that  

e = ( u / v 0 )  ¢(el I(2esinO/;t)de, (15) 

or e- - (U/Vo) (~ /2s in0) I  "°° ¢(hs/2sin0)I(8)ds.  (16) 
j -  oo 

(These relations, at first sight surprisingly simple, 
are no more than the Parseval theorem for Fourier 
transforms in a particular case. Analogous relations 
would apply in the simultaneous consideration of par- 
ticle size and 'mistakes ' .)  I f  ¢(e) is a wide curve in 
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comparison with I(s) it  m a y  be set equal to ¢(0) in the 

integration, so that ,  since j / ( s )  ds = re~ U -  I,  

e=h¢(0) /2  sin 0. (17) 

On the other hand,  ff 1(8) is the wide curve it m a y  be 
set equal to I(0) for the integration over ¢(e), so tha t  

e=(V/Vo) I(0)= I(0)/I. (is) 
Equat ions (17) and (18) express distortion and small- 
particle broadening respectively. The functional form 
of the transit ions from one to the other depends on the 
exact  shape of ¢(e) and 1(8). With  the common, but  
unreliable, Gaussian approximations 

¢(e) - (2~]2)-t exp ( - e2/2~}, (19) 

and I(s) - I E  exp { - TrE2s2), (20) 

where y is the root-mean-square stress and E is an  order- 
of-magnitude particle size, equation (15) gives 

e@E(2,y~)- t f  ~_ *~ exp / -  e 2 E ~  -t 4"E~sin20~}deh~ " 

- - 2 E ( 4 +  16A~}-t, (21) 

where A 1 = ~/(21T) Ey sin O/h. (22) 

Equat ion  (22) is quite analogous to (5), in which T/p ,., E, 
A ~ A  1, and the integral  has the same l imit ing values 
as {4+ 16A2} -t. The decrease of e with increase in A is, 
however, much  more rapid for (21). Other approxima- 
tions to ¢(e) and I(8) lead to the same general behaviour,  
but  different functional  dependence on A. Thus, for 
sufficiently small  values of sin O/A, particle-size broad- 
ening will always mask distortion broadening; and for 
sufficiently large values distortion broadening will be 
predominant .  The manner  in which the t ransi t ion takes 
place will depend on the nature  of the distortion and 
the shape of the crystallites. 
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The diffuse scattering of X-rays by single crystals of ice has been found to be of thermal origin. 
The existing theory is inadequate to explain the observations, and needs exf~nding to include the 
effects of vibrations of shorter wave-leng%hs. The main features of the representation in reciprocal 
space of the diffuse scattering are as follows: 

(1) There is a strong concentration of scattering power immediately round the reciprocal-lattice 
points, corresponding to rounded isodiffusion contours. 

(2) Beyond these regions are weaker bridges, which coimect reciprocal-lattice points; they are 
narrow, quite clearly defined, and their strength varies little along their length; they join together to 
form plane sheets of scattering power, which are parallel to the c* and to one of the a* axes, and 
intersect along lines joining rows of reciprocal-lattice points parallel to the c* axis. 

(3) There is no sheet of scattering power lying along any a* axis, or passing through the origin of 
the reciprocal lattice, though there are a few bridges, which make only a small angle with the a* axes, 
which do not fall into this general scheme. 

(4) Thesheets  pass through many 'forbidden' points, but at some other 'real '  reciprocal-lattice 
points they show sharp discontinuities; they are not always eentrosymmetrical about the reciprocal- 
lattice points. 

(5) The diffuse pattern does not become broader or less clearly defined with increasing angle of 
reflexion. 

The amplitudes of vibration of the molecules are of the order of 0.4 A. at - 5 ° C. The strong local 
disturbances which cause the diffuse streaks could include movements of the hydrogen atoms 
between neighbouring oxygen atoms. 

Introduction executed by  the atoms, and these, in turn,  depend upon 
The diffuse scattering of X-rays by  any  crystal depends the forces wi thin  and between the  molecules. Ice is 
on the directions and ampli tudes of the vibrat ions known to be molecular, bu t  al though the ar rangement  


